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Supersymmetric Quantum Mechanics on  

 



Appendix 5(i) 

 

Complex projective n-dimensional space is defined as flat (n+1)-dimensional complex space minus  the  origin, 

with points identified that are equal up to a scaling by a complex number 

 

  

 

 can be covered by n+1 coordinate patches. In terms of the n+1 homogeneous coordinates   

, the simplest way to do this is to take inhomogeneous coordinates 

 

     everywhere except   , 

 

     everywhere except   , 

 

and similarly for each patch up to the (n+1)-th 

 

     everywhere except   . 

 

Coodinates transformations on the overlap of these patches are manifestly holomorphic, so  are complex 

manifolds. Letting    be coordinates in the first coordinate patch  , a metric may be put on 

. This metric, the Fubini-Study metric takes the form 

 

 

 

The associated Kähler form is closed, so  are Kähler manifolds. They are in fact the Kähler manifolds with 

minimal cohomology, the only harmonic (p,q)-forms being exterior powers of the Kähler form. 

The Hodge Numbers are therefore 

    

      ,  , 

      ,   , 

 

which gives the Euler Characteristic as 



 

     . 

 

 can be shown to be equivalent to the homogeneous space 

 

     

 

where  is the isometry group of the , i.e. the group of diffeomorphisms of the manifold which 

leaves the metric invariant,   is the isotropy or stability group, the subgroup of the 

isometry group which leaves a particular point fixed, the  factor is due to the freedom to scale by a 

complex number. 

 is equivalent to the 2-sphere. 

 



5. Supersymmetric Quantum Mechanics on  

 

The second illustration of the relationship between supersymmetric quantum mechanics and fixed point 

theorems is with the manifold . This is an example where the fixed point set of a Killing Vector need not 

just consist of isolated fixed points. 

Firstly the ordinary Laplacian on  is dealt with and the Frobenius Reciprocity Theorem is used to 

demonstrate that all the solutions have been found. Killing Vectors are then introduced into the supersymmetry 

algebra, the zero energy solutions are related to the topology of the manifold and perturbation theory is used to 

show how the symmetry breaking affects the excited states. 

 



5.1  

 can be represented by three homogeneous complex coordinates   , with points identified that 

are equal up to scaling by a complex number. In terms of the inhomogeneous coordinates 

 

      , 

 

the Fubini-Study metric tensor on  takes the form 

 

     

 

and so the Kähler form is  

 

 . 

 

The isometry group of  is SU(3). Explicit formulae for the generators of this group can be found by taking 

the generators of U(3), the isometry group of , and transforming from the homogeneous coordinates on  

to the inhomogeneous coordinates. The nine generators of U(3) are 

 

     , where  . 

 

Transforming each of these generators into inhomogeneous coordinates gives 

 

   

 

   

 

   

 

   

 

   

 



   

 

   

 

   

 

    . 

 

Thus in terms of the inhomogeneous coordinates there are eight independent operators, the generators of SU(3). 

[The fifth operator minus the first is equal to the last operator on the list.] A U(1) factor having been lost due to 

the freedom to scale the homogeneous coordinates. We will take as a basis for SU(3): 

 The Cartan Sub-Algebra 

 

   

 

   

 

and the raising and lowering operators 

 

   ,  

 

   ,  

 

    ,  . 

 

 

 

 

 

 

 



In terms of an SU(3) root diagram the basis takes the following form: 

 

 

 

where  measures the third componenet of the SU(2) subgroup  , the distance of a weight along the  

axis, and  measures the corresponding distance along the  axis.  are hypercharge operators, 

which commute with ,  and  respectively. 

 

    

 

    

 

    

 



5.2 Supersymmetry on  

 

Defining, as before, the supersymmetry operators 

 

 ,   ,  ,  

 

gives the supersymmetry algebra 

 

    ,  ,   . 

 

Due to the invariance of the metric under the isometry group the eigensolutions of the Laplacian on  form 

representations of SU(3), but only certain representations of SU(3) occur. To determine the complete set of 

eigensolutions it is necessary to employ the Frobenius Reciprocity Theorem. 

 

 

5.2.1 The Frobenius Reciprocity Theorem [19][20] 

 

 are examples of  homogeneous spaces  , where G is the isometry group and H is the isotropy group, 

the subgroup which leaves one point fixed. The eigensolutions of the Laplacian on a homogeneous space form 

the representations of the isometry group G induced by some representation of the isotropy group H. 

The Frobenius Reciprocity Theorem determines how induced representations decompose into irreducible 

representations. The theorem states that the multiplicity of the occurrence of a particular representation of G, in 

the representation induced by a representation R of H, is equal to the multiplicity of R in the irreducible 

representation of G when it is decomposed under the subgroup H. In the case in question G and H are infinite 

groups, so the induced representation is an infinite dimensional function space and decomposes into an infinite 

number of irreducible representations of G. 

Taking as an example the two-sphere    the zero-form eigensolutions of the Laplacian 

transform trivially under the isotropy group and so form the representation of SU(2) induced by the trivial 

representation of U(1). To decompose this representation each irreducible representation of SU(2) is examined 

to see how many times the trivial representation of U(1), i.e. the chargeless singlet, occurs after decomposition 

under U(1). It is straightforward to see that the odd-dimensional representations of SU(2),   each 

contain one chargeless singlet when decomposed under U(1) and the even-dimensional representations 

  don’t contain any. The Frobenius Reciprocity Theorem therefore implies that the eigensolutions of 

the Laplacian form one copy each of the odd-dimensional irreducible representations of SU(2). These are in 

fact the Associated Legendre Funcions   . This is the reason why orbital angular momentum is never half 

integer valued. 



One-forms transform as a covector. Under the isotropy group U(1) this two-dimensional covector decomposes 

into a (1,)-form with charge +1 and a (0,1)-form with charge -1. These form two separate irreducible 

representations of U(1). Both the +1 and the -1 representations occur once in the decomposition under U(1) of 

each of the odd-dimensional representations of SU(2) apart from the singlet, i.e.  , but not in the even-

dimensional representations. Therefore the one-form eigensolutions of the Laplacian on   form two copies of 

each of the odd-dimensional representations of SU(2) apart from the singlet, one copy consisting of (1,0)-forms, 

the other copy being (0,1)-forms. 

The two-form eigensolutions are Poincare dual to zero-form eigensolutions and so form the same SU(2) 

representations, that is, one copy of the odd-dimensional representations    . 

When the Laplacian on  was considered in the previous chapter the Frobenius Reciprocity Theorem was not 

essential to understand which representations were formed by the eigensolutions. It is well known that the 

scalar spherical harmonics are the Associated Legendre Functions and the one-form and two-form 

eigensolutions must all be related to these by supersymmetry, forming supersymmetry quadruplets. 

On  things are more complicated and without invoking the Frobenius Reciprocity Theorem it is not obvious 

which irreducible representations of SU(3) occur as eigensolutions of the Laplacian. 

 is equivalent to the homogeneous space  , so zero-form eigensolutions of the Laplacian on 

 form the representation of SU(3) induced by the trivial representation of U(2). The multiplicity of an 

irreducible representation of SU(3) in this representation is equal to the number of hypercharge zero singlets it 

contains after decomposition under U(2). 

Moving inwards in the weight diagram of an irreducible SU(3) representation, the number of weights at each 

point in a particular layer increases by one every time the previous layer was hexagonal. Once a triangular layer 

is reached the number of weights at each point in this triangle and within are the same. Decomposing an 

irreducible representation of SU(3) under U(2), a hypercharge zero singlet will only be obtained if the number 

of weights at each point increases in each layer all the way to the centre. In this case the hypercharge zero 

weights will decomposed into the U(2) representations    Thus a hypercharge zero singlet 

occurs once in the decomposition of the regular hexagon representations, but not in the decomposition of any 

other irreducible representations. Therefore the only representations occurring as zero-form eigensolutions of 

the Laplacian on  are the trivial representation and the regular hexagons, and each of these occurs once. The 

dimension of the n-th regular hexagon representation of SU(3) is  . 



One-forms transform as covectors which on  form the following four-dimensional representation on an 

SU(3) weight diagram (where hypercharge has been scaled by a factor of   ). 

 

 

 

and decompose under U(2) into two doublets, a (1,0)-form doublet  and a (0,1)-form doublet . 

After decomposing the irreducible representations of SU(3) under U(2) it can be seen that the regular hexagons 

all contain both doublets, the hypercharge +1 states decomposing into   and the hypercharge 

-1 states decomposing into   . 

The hypercharge +1 doublet is also contained in the decomposition of the triangular decuplet representation 

 

 

 

and a sequence of larger representations produced by surrounding the decuplet with irregular hexagons. If the 

decuplet is considered as an irregular hexagon with sides of length nought and three, the next representation is 



an irregular hexagon with sides of length one and four, the 35-dimensional representation, the next is an 

irregular hexagon with sides of length two and six, the 81-dimensional representation, and so on. 

The hypercharge -1 doublet is contained in the decomposition of the complex conjugate representations, , the 

, the  etc. 

The one-form eigensolutions of the Laplacian on  therefore consist of a (1,0)-form copy of each of the 

regular hexagonal representations, a (1,0)-form copy of each of the sequence of irregular hexagonal 

representations which contains the triangular decuplet at the centre including the decuplet itself, a (0,1)-form 

copy of each of the regular hexagons and a (0,1)-form copy of the complex conjugate of the previous irregular 

hexagonal representations. 

Two-forms transform as anti-symmetric second rank cotensors. Taking anti-symmetric combinations of two of 

the previous four-dimensional covector representations gives the following six-dimensional representation on 

an SU(3) weight diagram, 

 

 

which decomposes under U(2) as a (2,0)-form singlet , a (1,1)-form triplet , a (1,1)-form singlet  and a 

(0,2)-form singlet . 

The hypercharge zero singlet  is contained in the decomposition of the SU(3) singlet and each of the regular 

hexagons. The hypercharge zero triplet  is contained once in each of the regular hexagons, once in the 

decomposition of the decuplet and its sequence of irregular hexagons and also once in the complex conjugate of 

the decuplet and the complex conjugate of the sequence of irregular hexagons. The  representation is 

contained once in the decomposition of the decuplet and each of its sequence of irregular hexagons and the  

representation is contained once in the decomposition of each of the complex conjugate representations. 

The two-form eigensolutions of the Laplacian on  therefore consist of a (1,1)-form SU(3) singlet, two (1,1)-

form copies of each of the regular hexagon representations, a (2,0)-form and a (1,1)-form copy of the decuplet 

and each of its sequence of irregular hexagons and a (0,2)-form and a (1,1)-form copy of the anti-decuplet and 

each of its sequence of irregular hexagons. 



The three-form eigensolutions correspond to the one-form eigensolutions in a one-to-one way, as do the four-

form eigensolutions to the zero-form eigensolutions due to Poincare duality. 

Taking these results as a whole it can be seen that the Frobenius Reciprocity Theorem indicates that on  the 

Laplacian has three singlet solutions, a (0,0)-form, a (1,1)-form and a (2,2)-form. These three solutions must 

have zero energy as there are no one-form or three-form singlet solutions to which they could be mapped by the 

supersymmetry operators, so the Frobenius Reciprocity Theorem is powerful enough to actually determine the 

cohomology of the manifold. The three zero energy solutions are in fact the constant (0,0)-form, the Kähler 

form  and the volume form V. 

    

The rest of the solutions form supersymmetry quadruplets. Each of the regular hexagons comes in two 

quadruplets, one containing a (0,0)-form, a (1,0)-form, a (0,1)-form and a (1,1)-form and a Poincare dual 

quadruplet containing a (2,2)-form, a (1,2)-form, (2,1)-form and a (1,1)-form. Each of the decuplet and its 

sequence of irregular hexagons comes in one quadruplet containing a (1,0)-form, a (2,0)-form, a (1,1)-form and 

a (2,1)-form. Each of the anti-decuplet and its sequence of irregular hexagons comes in a quadruplet consisting 

of a (0,1)-form, a (1,1)-form, a (0,2)-form and a (1,2)-form. 

All the states contained in the regular hexagon representations may be found by considering the Laplacian on 

scalars and using supersymmetry operators and Poincare duality. Similarly all the states contained in the 

irregular hexagon representations may be found by considering the Laplacian on one-forms. 

 

 

5.2.2 The Regular Hexagon Representations 

The Laplacian on scalars is 

 

    ,  

 

   

 

Eigensolutions of the Laplacian which are members of regular hexagons will be denoted , n 

signifies the level of the representation, i and j are the eigenvalues of the operators  and  respectively, and 

(k) is a degenergy label for states occupying the same point in the SU(3) weight diagram. The highest weight 

eigensolutions  take the form 

 

     

 

It is quite straightforward to compute the action of the Laplacian on these functions. 



 

   

 

           

 

   

 

   

 

    

 

     

 

   

 

   

 

which gives finally 

 

 

 

   

 

    . 

 

It is again straightforward to show that this state is indeed a highest weight state, and so is annihilated by  and 

 . 

    

 



 . 

 

Under the transformation  , the raising operators are transformed into each other  . The 

state   is symmetrical under this operation and so must be annihilated by  as well as  . 

Thus the representation at level n has dimension  and energy  , and all the states in the 

representation may be found by applying the lowering operators;  ,   and   to the highest weight state 

. 

 

5.2.3 The First Regular Hexagon States 

The first excited state form the adjoint representation of SU(3), the octet, and have energy E = 3. 

 

      

 

          

 

      

 

The second excited states obtainable from the highest weight state   form the   

representation. All these states are functions with denominators   . The numerators are 

         

 

           

 

          

 

           

 

         

and the energy of the states is  . 



 

5.2.4 Irregular Hexagon Representations 

The other sequence of representations which form eigensolutions of the Laplacian on  may be found by 

consideration of the Laplacian acting on (1,0)-forms. The (1,0)-forms 

 

    ,  

 

are states in the n-th irregular hexagon representations. n must be greater than or equal to one for the state to be 

normalizable. These states are annihilated by the Lie Derivative along the ladder operators,  and 

so are outer weight states. 

The holomorphic exterior derivative and its adjoint act on these one-forms thus 

 

   

 

   

 

so    are coclosed with respect to the holomorphic exterior derivative. 

 

   

 

   

 

 

 

     

 

which gives finally for the operation of the Laplacian 

 

 

 

so the energy of the n-th irregular hexagon representation is   . 



The other members of the representations may be found by acting on these outer weight states with the Lie 

Derivatives along the ladder operators:   . The dimension of the n-th lowest of these 

representations is given by the formula 

 

     

 

the first one being the decuplet. The (1,0)-forms which make up the decuplet representation and have energy 

  all have denominators    with numerators as follows 

 

            

 

      

 

       

 

         

 

These representations are complex so their complex conjugates must also be (0,1)-form eigensolutions of the 

Laplacian, the  , the , the  etc. 

The other three members of the supersymmetry quadruplets containing these 1-forms; i.e. the two 2-forms and a 

3-form may of course be found by applying the supersymmetry operators. 



5.3 Killing Vectors on  

 

The fact that SU(3) is a rank 2 Lie group means that it is possible to introduce a two parameter family of Killing 

Vectors into the supersymmetry algebra. The simplest way to do this is in terms of the two hypercharge 

operators    and   

 

    

 

The effect of the Killing Vector acting on the coordinates is an infinitesimal rotation, which generically will 

leave three points fixed. The easiest way to find the fixed points is to consider the homogeneous coordinates  

 . In these coordinates the Killing Vector takes the form 

 

    

 

and the effect of this operator on the homogeneous coordinates is 

 

    

 

where    is an infinitesimal parameter, so the only points unchanged up to a scaling by a complex number are 

 

    ,  ,   , 

 

the three fixed points. 

In terms of the inhomogeneous coordinates these three points are the origins in the three coordinate patches 

used to cover . In the first coordinate patch 

 

    ,  

 

the origin  corresponds to  . 

In the second coordinate patch 

 

 ,  

 



which in terms of the coordinates  on the overlap of the patches  . Using the chain rule to 

transform the coordinates, the Killing Vector in the second patch take the form 

 

    . 

 

The fixed point in this patch is again the origin   and corresponds to the point   . 

In the third coordinate patch 

 

 ,  

 

the Killing Vector takes the form 

 

    . 

 

The fixed point is the origin   and corresponds to the point   . 

There are also three cases when the fixed point set of the Killing Vector doesn’t just consist of isolated fixed 

points, but is composed of one fixed point plus a fixed  submanifold. The three cases for which this occurs 

are when s = 0 or t = 0 or s = t. In these cases the Killing Vector is an SU(3) hypercharge operator and so 

commutes with an SU(2) subgroup of SU(3), this SU(2) being the isometry group of the fixed  

submanifold. The first of these Killing Vectors in terms of the homogeneous coordinates is 

 

    

 

and its infinitesimal action on the coordinates is 

 

    

 

so the fixed point set consists of the point 

 

    

 

and fixed  submanifold 

 

    . 



In terms of the inhomogeneous coordinates, the first and third patches on  are needed to completely cover 

this fixed  submanifold. The form of the Killing Vector in these two patches is the same 

 

    

 

in the first patch, and  

 

    

 

in the third patch. The inhomogeneous coordinates that correspond to the fixed  are 

 

      in the first patch, 

     in the third patch. 

 

The second hypercharge operator 

 

    

 

has a fixed point set consisting of the fixed point 

 

 

 

and the fixed  submanifold 

 

     . 

 

The action of the third hypercharge operator 

 

    

 

on the homogeneous coordinates is 

 

    

 



so the fixed point set consists of the fixed point 

 

     

 

and the fixed  submanifold 

 

     . 

 

The standard form of the Killing Vector on any patch is 

 

 

 

where both parameters  and  are positive. To achieve this form the coordinates may have to be redefined by 

interchanging one or both of the holomorphic coordinates with their conjugate coordinates. Each coordinate 

interchange produces a reversal of the orientation of the patch. 

 



 

5.4 The Introduction of a Killing Vector into the supersymmetry algebra 

The exterior derivative may now be generalized by the inclusion of a Killing Vector to give  , or more 

specifically 

 

    

 

leading to the Hamiltonian  as in section 3. 

This operator may be split into a holomorphic piece  and an anti-holomorphic piece  , where 

 

    

    

 

 maps (p,q)-forms to (p,q+1)-forms and (p,q-1)-forms. 

 maps (p,q)-forms to (p=1,q)-forms and (p-1,q)-forms. 

 

 

5.4.1 Cohomology corresponding to  

It has not been possible to find all the harmonic forms in the sense of  on . The independent harmonic 

forms are however in a one-to-one correspondence with the classes of closed but not exact forms, so it was 

decided to settle for finding representations of these classes in the sense of  . When acting on the subspace of 

zero energy states  , so  may be treated like a nilpotent operator. Witten ([1] p.28, 29) gives a formula 

for  , closed but not exact forms in the sense of  , where i is an index running over the cohomology classes. 

With  being a 4-dimensional manifold this reduces to 

 

    

 

where  is the test function 

 

    ,  

       otherwise 

      local max.  

 

which is only non-zero over a region of  containing one fixed submanifold i.e. either a fixed point or a fixed 

. This is a continuous function because when the denominator of the exponent’s argument is zero it 



vanishes along with all its derivatives. The parameter  must therefore take a positive value less than the local 

maximum of  surrounding the fixed submanifold.  are the representatives of the cohomology of the fixed 

submanifold. The dual of the Killing Vector  and the function  are defined in Appendix 3(i). 

The  are annihilated by the exterior derivative d by definition and also by  because they are defined on a 

fixed manifold, therefore  . The fact that the other piece of the  is annihilated by  depends on the 

relation   which may easily be shown to be true as follows: 

 

    

    because k is a Killing Vector 

    

  or  

    

    . 

 

The non-exactness of the  follows from consideration of the fixed manifolds. On a fixed manifold  equals 

the ordinary exterior derivative d which maps p-forms to (p+1)-forms, and the lowest-form part of  is then 

 . If  were exact in the sense of  this would imply that the  were exact in the sense of d which 

is not the case. The other two terms in  on a fixed manifold are manifestly exact as  and  are 

constants. 

All this may be clearly illustrated for both the fixed point and the fixed  cases by consideration of the 

Killing Vector  . The function  corresponding to this Killing Vector is 

 

     

 

This is a degenerate Morse Function with three extrema; the minimum  on the fixed  

 , the maximum  on the 3-sphere  and the minimum 

 on the fixed point  . The Morse Indices of these critical manifolds are p = 0 for 

the  and the point and p = 1 for the . This incidentally gives the following values for the Morse Numbers 

using the formula at the end of section 1.2.1. 

 

    

    

    



       

       

 

Thus giving the value of the Euler Characteristic of  as 

 

    . 

 

Near the fixed  the two form   may be calculated to be 

 

 

 

The two representatives of the cohomology of the  are 

 

     ,  . 

The parameter  may take any value greater than zero, but less than  , the maximum value of  which is on 

the . Taking  equal to  the test function simplifies to give 

 

    ,  , 

 

        ,  . 

 

Putting all these terms together in Witten’s formula gives two even-forms  and  closed but not exact in the 

sense of  . 

In the second patch the Killing Vector takes the form   . Near the fixed 

point, the origin of this patch,  and  take the following form 

 

  

 

 

 



The representative of the cohomology is the constant zero-form  . The nearest maximum to the fixed 

point is where  , which is of course the same 3-sphere as previously, where  . Taking this 

maximum value for  the test function simplifies to 

 

 ,  , 

        ,  . 

 

These expressions may be combined therefore to form  , the third representative of the cohomology of  in 

the sense of  . The  are only defined up to the addition of an exact form, so they are members of a 

three parameter family which is apparent in the freedom to scale  between zero and  . ,  and  are all 

even-forms so the Euler Characteristic of  is just three, the sum of the dimensions of the even cohomology 

groups. 

 

 

5.4.2 The Zero Energy Solutions 

Zero energy eigensolutions of the Laplacian corresponding to  face much more stringent requirements 

allowing no freedom to scale any arbitrary parameters. It has been possible to find the two self-dual even-form 

zero energy eigensolutions, but unfortunately not the anti-self-dual zero energy solution. 

Using the anti-holomorphic part of  it is possible to show, as follows, that the even-forms 

 

    

 

    

 

where  is the Kähler form, are zero energy eigensolutions of the Hamiltonian. 

 

 

 

 

 

   



 

The anti-holomorphic exterior derivative annihilates the Kähler form and the interior product only acts on the 

exterior algebra, the full operator  therefore annihilates the states  and  . Moreover these 

states are real and so are annihilated by the holomorphic operator  as well and therefore are closed in terms of 

the generalized exterior derivative  and are therefore zero energy eigensolutions of the Hamiltonian which is 

the generalized Laplacian. 

 

 

5.4.3 Excited States 

The self-dual zero energy eigensolutions of the Hamiltonian, after the introduction of the Killing Vector into 

the supersymmetry algebra consist of combinations of the representatives of the cohomology of  multiplied 

by scalar functions. These combinations of the representatives of the cohomology may be substituted into the 

Schrödinger Equation to diagonalize the Hamiltonian. When this has been done the Hamiltonian takes a much 

simpler form. On scalars it consists of the scalar Laplacian plus a function of z and u. 

Taking the first of the zero energy eigensolutions 

 

    . 

 

After the substitution of the differential form part of this solution,  , into the Schrödinger 

Equation the resulting diagonalized Hamiltonian on scalars 

 

    

 

must give zero when acting on the scalar part of the solution,  . The action of the Laplacian 

on this function may therefore be used to find  . 

 

  

 

 

which gives the function  as 

 



 

 

The excited states form supersymmetry quadruplets which consist of a state composed of one of the zero energy 

states multiplied by a scalar function plus its three supersymmetry partners. States formed from products of 

functions with the different zero energy states are in separate supersymmetry quadruplets. 

Apart from the zero energy solution, eigensolutions of  cannot be found exactly. 

A more tractable form of the Hamiltonian for the purposes of perturbation theory can be obtained by using the 

zero energy eigensolutions as an integrating factor. With t = 0 for the moment, put 

 

     

 

 

 

 

The conjugated form of the Hamiltonian 

 

 

 

is therefore 

 

 

 

 .        (1) 

 

Due to the linearity of the derivatives in the potential term, the conjugated form of the Hamiltonian when  

follows immediately 

 

  

 



The general form of the Hamiltonian  , after the substitution of a zero energy solution, valid when acting on a 

p-form of arbitrary p is the sum of the Laplacian and the Lie Derivative along the vector appearing in the 

Hamiltonian when acting on scalars,   . 

The form of the Hamiltonian  acting on excited states corresponding to the other zero energy state  

follows straightforwardly by transforming the parameters s and t as follows:  ,  . 

Generically the potential term in the Hamiltonian   commutes with the 

Cartan Sub-Algebra of SU(3),  and  , but not with any of the other generators. The SU(3) symmetry of the 

Hamiltonian is broken to  .  

For the special cases s = 0, t = 0 and s = t where the Killing Vector is a hypercharge operator, the potential term 

commutes with the hypercharge operator and an SU(2) subgroup of SU(3), so the SU(3) symmetry is broken to 

 . 

By a slight rearrangement the potential term can be rewritten in terms of ladder operators and states in the 

SU(3) octet. 

 

 

 

 

  

 

transforming  

 

 

 

The general Killing Vector leads to the term 

 

 

which shows that when computing corrections to the energy in perturbation theory only matrix elements 

between states of the same weight   , in the same representation or one immediately above or 

immediately below,  or  , need to be considered. 

 



5.5 Perturbation Theory 

5.5.1 1st order perturbation theory (The Octet) 

Unlike on the 2-sphere, the first order perturbative contributions on  don’t all vanish. On the 2-sphere there 

is an argument due to symmetry of the Hamiltonian under   , where z is the coordinate on the sphere, 

which shows that the matrix elements for first order perturbation theory vanish. However on  no such 

symmetry exists. 

From the form of the perturbation which is made up of first order derivatives, it is obvious that the zero energy 

ground state solutions which correspond to  , receive no contributions to their energy in any order 

of perturbation theory. The first order energy shift of the other states can be calculated by acting on the 

wavefunction with the perturbing term and then expanding the result as a linear combination of the 

eigensolutions. For the octet 

 

 

         

         

 

  

         

         

 

  

             

             

 

  

    

    

 



  

 

 

   

 

Degenerate perturbation theory must be used to find the first order shift for the two states with 

 . 

 

 

 

Substituting in for the matrix elements gives 

 

 , i.e.  

 

 corresponds to the eigensolution 

 

  

 

 corresponds to the eigensolution 

 

  . 

 



Collecting together the results for each member of the octet, the first order shifts due to the introduction of the 

perturbation   are 

 

         

  

          

 

       

 

where the position of the energy shift in the diagram corresponds to the position of the eigensolution in the 

octet. As expected this perturbation breaks the original SU(3) symmetry to , the SU(2) being 

 which commutes with , giving a triplet, two doublets and a singlet under this group. 

Using the symmetry under , the energy shifts due to the perturbation  follow 

immediately by a  rotation of the previous octet diagram. This gives 

 

 

         

  

          

 

       

 

Due to the linearity of the first order matrix elements, in the case of the general perturbing term 

 , the first order energy shift is the sum of that from the two terms 

separately, except for the case of the two states with  where degenerate perturbation theory must be 

used. In this case the energy shifts correspond to the eigenvalues of the matrix 

 



 

 

substituting in for the matrix elements leads to 

 

 

 

 

 

which gives as the eigenvalues and their corresponding eigensolutions: 

 

 ,  

 ,    

 

The first order energy shifts due to the most general perturbation for each of the members of the octet 

corresponding to the zero energy ground state  consist of 

 

 

 

         

  

        

 

       

 

which shows that only in the three cases s = 0, t = 0 and s = t  is there an SU(2) subgroup unbroken. 

The shift in the octet corresponding to ground state  may be found by transforming   . 



 

5.5.2 First order perturbation theory for other representations 

Taking the Killing Vector  , to illustrate the effect of the perturbation on the energies of higher 

energy representations, the effect on the representations corresponds to  is related to the effect on the 

representations corresponding to  by changing s to –s. The first order shift in energy of the highest 

weight wavefunction of any of the regular hexagon representations can be found quite easily. 

 

 

  

   

 

so that the first order shift for the highest weight states are   . 

The same calculation for the state  gives 

 

 

    

    

 

so that the first order energy shift for these states is   . 

The first order corrections for the whole of the second excited regular hexagon states, the 27, can be calculated 

by using the fact that the  subgroup is unbroken, that the sum of the energy shifts in first order 

degenerate perturbation theory is zero and that the sum of the first order energy shifts of the whole 27 must be 

zero. The shifts are: 



  

 

         

  

          

 

         

 

          

 

         

 

Taking into account that changing    to    rotates the diagram through  and ensuring the 

correct symmetry breaking in the cases s = 0, t = 0 and s = t leads to the energy shift diagram for the general 

perturbation   . The first order energy shifts for the 27 corresponding to 

the ground state   are: 

 

,   

 

 

         

  

       

 

     

 

       

 

         



 

1
st
 Order Perturbation Theory (The Decuplet) 

The general form for the perturbation produced by the Killing Vector  is the Lie Derivative 

 . Acting with this operator on the (0,1)-form highest weight of the decuplet 

 

   

 

gives 

   

     

 

which can be decomposed in terms of (1,0)-form eigensolutions as: 

 

 

 

where  

 

   

 

and 

 

   

 

are members of the (1,0)-form  representation, and 

 

   

 

is a member of the (1,0)-form  representation. 

Thus the contribution to the energy of the highest weight of the decuplet from first order perturbation theory 

vanishes. Using the Killing Vector  the action of the perturbation on the highest weight state 

of the decuplet is: 

 



   

     

 

The highest weight therefore has a zero contribution to its energy in first order perturbation theory for any 

Killing Vector. The same is in fact true for all members of the decuplet. 

 

 

5.5.3 Second Order Perturbation Theory 

The simplest Killing Vector to use in an example of second order perturbation theory is 

  due to its symmetry under the interchange   . The corresponding 

potential term in the Hamiltonian 

 

 

 

conserves i and j, and changes n by zero, plus one or minus one. The number of matrix elements contributing in 

second order perturbation theory is therefore very small, so the second order contributions to the energy of the 

octet corresponding to the ground state  , can be straightforwardly calculated. 

For example the contribution to the energy of the highest weight state    is 

 

 

       

 

the two terms being equal due to the symmetry under  . By the decomposition of the operator T acting on 

  used in the first order perturbation theory 

  

     

 

The simplest way to calculate the other matrix element is to use explicit integration over . The volume of 

 is   

    . 



Changing coordinates to   ,   

 

   . 

 

Due to the fact that T conserves  i  and  j  any dependence on    and    in the matrix elements cancels, so the 

integration measure is 

 

   

 

The factor of    will be neglected as it will cancel when the wavefunctions are normalized. 

The action of the operator  T  on the wavefunction    is 

 

 

               

 

so that in terms of the coordinates    and    the matrix element is 

 

 

 

and the normalization term 

 

 . 

 

Substituting each of these factors, along with  , into the formula for the second order 

energy shift gives 

 

 

 

Performing the same calculation for the state    gives the matrix elements as 

 ,  



 ,  

 

which gives the second order contribution to the energy 

 

     . 

 

By symmetry under    this is the same as for the state  , 

 

    . 

 

In order to calculate the second order energy shift of the states at the centre of the octet with  i = j = 0, the 

diagonalized eigenfunctions from the first order calculation are used. These eigenfunctions are 

 

 

 

 

Acting on these functions with the operator T and decomposing the result in terms of the eigenfunctions of the 

Laplacian gives 

 

 

 

 

 . 

 

These expressions determine half the matrix elements needed to compute the second order contribution to the 

energy. After explicit integration of    the values of the other matrix elements are 

 

   

   

 

and the factors due to the normalization of    are 



   . 

 

Combining all these results gives finally 

 

 

 

   

 

 

 

   

  

 . 

 

The second order contribution to the energy due to the Killing Vector   , for the 

whole octet are: 

 

         

 

         

 

        

 

The previous calculation could have been performed in the same way to find the second order energy shift of 

the decuplet but would have been even more tedious with having to use the Lie Derivative of the perturbing 

vector and because there are up to four terms contributing each time as opposed to two in the case of the octet. 



5.6 Asymptotic Solutions on  

5.6.1 The Harmonic Oscillator Approximation 

(Isolated Fixed Points) 

In the case where the Killing Vector has three isolated fixed points the Hamiltonian tends to a harmonic 

oscillator around each of the fixed points in the large s, large t limit. There is one zero energy eigensolution 

localized around each fixed point. The zero energy eigensolution localized around the first fixed point 

, or in inhomogeneous coordinates the origin in the first patch  is 

 

  

 

The fact that this solution has zero energy can be demonstrated by operating on it with  . 

 

 

 

 

which gives   . Taking the complex conjugate it follows immediately that    as 

well and so   . Using the locally Euclidean metric near the fixed point,   is self-dual 

under the Hodge Star and so is also annihilated by the conjugate operator  in the harmonic operator 

approximation, therefore  is a zero energy eigensolution of the approximate Hamiltonian. 

 

Around the other two fixed points,  or  in the second patch,  or 

 in the third patch, the zero energy solutions are completely analogous. 

Taking  

 

 

 

 

which can be seen to be annihilated by the Hamiltonian in the harmonic oscillator approximation using the form 

of the Killing Vector on each patch. 

Topological invariants of  are now determinable in terms of the zero energy eigensolutions localized around 

the fixed point set, as in section 3. There is an even-form zero energy eigensolution localized around each of the 

three fixed points which indicates, due to the independence of the index of the supersymmetry operators under 

changes in values of the parameters  s  and  t, that the Euler Characteristic of   is . 

It is straightforward to find the  excited states. Near the fixed point  as well as the 

ground state  there are higher energy states 

 



  ,  

  ,  

 ,  

 

Higher energy states may be found by acting on these states with the harmonic oscillator ladder operators 

 

 ,   ,    ,    

 

The first two operators raise the energy by 2s, the second two by 2t. 

The excited states form representations of  , due to the symmetry of the harmonic oscillator 

Hamiltonian, of dimension    where  and  are integers. After taking into consideration the  

contributions to the energies the energy levels will be split to form representations of , the 

symmetry group of the exact Hamiltonian. 

Each of these states is in a separate supersymmetry quadruplet, the other three members of which may be found 

by applying the two supersymmetry operators in this approximation. 

The energy levels of the excited states around the other fixed points are similar, but with the parameters altered 

due to the different forms of the Killing Vector in each of the patches. Near the second fixed point, 

, the energies of the states may be found by transforming . Near the third fixed 

point, , the energy may be found by transforming those in the first case with . 

 

 

5.6.2 The Harmonic Oscillator Approximation 

(Fixed  Submanifold) 

When the Killing Vector leaves fixed a  submanifold the Hamiltonian asymptotically takes the form of a 

two-dimensional harmonic oscillator in the two directions transverse to the fixed  plus the Laplacian on the 

fixed . Taking    the zero energy solutions are 

 

 

  

     

 

 

  



     

 

which are localized around the fixed . These solutions are the product of the transverse harmonic oscillator 

ground state with the self and anti-self-dual representatives of the cohomology of the fixed . The other 

approximate zero energy solutions are localized around the fixed point  , the origin in the second 

patch 

 . 

 

These three zero energy even-form eigensolutions again illustrate the Lefschetz Fixed Point Theorem, giving 

 . 

In this case, i.e. t = 0, the Hamiltonian on scalar excitations of  and  is 

 

  

 

where    is the Laplacian on scalars and  is 

 

 

 

Substituting    and retaining terms of order , so that for large s, near the fixed ,  

takes the approximate form of a harmonic oscillator 

 

    

 

The solutions being 

 

  

 

with energy    and    where i is the eigenvalue of the central charge   . 

 



 

5.6.3 The Hirzebruch Signature 

The Hirzebruch Signature    of  , the number of self-dual forms minus the number of anti-self-dual 

forms, is one. It is always possible to put the eigensolutions of the Laplacian in a basis where they are all either 

self or anti-self-dual by pairing eigensolutions with their dual under the Hodge Star. In this basis every non-zero 

energy self-dual eigensolution is paired with an anti-self-dual solution, so only zero energy solutions contribute 

to the signature. On  in this basis the zero energy eigensolutions of the Laplacian are, 

 

    , which is self-dual 

    , which is anti-self-dual 

     , which is self-dual. 

 

After introducing the Killing Vector into the supersymmetry algebra the index of    acting on    

must still be equal to the signature for all values of s and t. 

The relationship between the Killing Vector and the signature can be seen in terms of the form of the Killing 

Vector on the three different patches. 

 

     

where  is the number of the parameters  which are negative in the Killing Vector on the patch j. On  the 

Killing Vector with  , 

 

     

 

has no negative  on the first patch, two negative on the second patch and one negative on the third, so 

, see section 5.3. 

Alternatively, in terms of the orientation on each patch,  

 

     

 

where  or  depending on whether or not the orientation on the patch agrees with the natural 

orientation on  after the Killing Vector has been put in the standard form. On the first and second patches 

the orientation is the same as the natural orientation and on the third patch it is opposite. 



When s and t are large  and the low energy solutions become localized around the fixed point, the 

zero energy solutions around the fixed points in the first and second patches are self-dual and that around the 

fixed point in the third patch is anti-self-dual, as in section 5.6.1. 

When there is a fixed  e.g. t = 0 and s large one of the zero energy solutions around the fixed  is self-

dual and the other is anti-self-dual, because , and the zero energy solutions localized around the 

fixed point is self-dual, as in the previous section, again confirming . 

 

 

5.6.4  Corrections 

The  corrections to the energy break the symmetry from , where one  is the isometry 

group of a fixed  and the other is due to the symmetry of the transverse harmonic oscillator, to 

 the symmetry group of the exact Hamiltonian. 

To find the  contributions to the asymptotic expansion for the energy it is easiest to use the form of the 

Hamiltonian obtained after using  as an integrating factor, equation (1) 

 

    

 

Substituting  into this equation and retaining terms of order  gives 

 

 

The lowest energy eigensolutions of  are the Associated Legendre Functions 

 

 ,  ,  . 

 

The next lowest energy eigensolutions take the form of expansions in powers of , i.e. 

 

   ,  . 

 

Inserting this expansion into the Schrödinger Equation gives the relation 

 

    

 

so that for closed solutions , where k is an integer greater than or equal to zero. These solutions are 

each in an SU(2) multiplet under the unbroken  subgroup of SU(3). The other members of the multiplets 



may be found by using the ladder operators . Taking complex conjugates gives another set of multiplets 

with . 

The first excited state of the Laplacian on , the octet with energy E = 3, has split in the large s limit to form 

an SU(2) triplet 

 

  ,  ,   . 

 

with energy E = 2,  

two SU(2) doublets 

 

   ,  

   ,  

 

with energy ,  

and a singlet 

 

  

 

with energy . 



5.7 Summary 

The ordinary Laplacian on  is invariant under the isometry group SU(3). Which representations are formed 

by the eigensolutions of the Laplacian is determined by the Frobenius Reciprocity Theorem. 

After the introduction of a Killing Vector of the general form    into the 

supersymmetry algebra the Hamiltonian is symmetrical under  in the general case and 

 when the Killing Vector leaves fixed a  submanifold. A formula of Witten’s involving the 

cohomology of the fixed submanifold has been used to find three families of closed but not exact even-forms in 

the sense of . This corresponds with the fact that the Euler Characteristic of  is . The zero 

energy eigensolutions of the Laplacian corresponding to  are more difficult to find; the two self-dual ones 

have been found, but unfortunately the anti-self-dual one hasn’t/ 

The change in energy of the excited states was calculated using perturbation theory and used to illustrate the 

breaking of the SU(3) symmetry. 

In the large s, large t limit the low energy solutions become localized around the fixed submanifold of the 

Killing Vector. In the generic case when the Killing Vector just leaves three points fixed the Hamiltonian takes 

the approximate form of a four-dimensional harmonic oscillator around each fixed point. There is one zero 

energy even-form solution around each fixed point again corresponding via the Lefschetz Fixed Point Theorem 

to . 

Two zero energy solutions are self-dual and one is anti-self-dual corresponding to . 

When the fixed point set consists of a fixed  and a fixed point, in the harmonic oscillator approximation the 

zero energy solutions consist of two around the fixed  with one self-dual, one anti-self-dual and one around 

the fixed point which is self-dual. 
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