
 

Chapter 3 

 

Fixed Point Theorems 

 

Appendix 3(i) 

Topological Definitions and Results [5], [9] 

Much of this thesis is concerned with differential topology on compact Riemannian manifolds. This appendix 

contains definitions of certain of the operators which are used. The objects on which these operators act are 

differential forms, , which are the totally anti-symmetric covariant tensor fields 

 

The wedge product being the anti-symmetric tensor product. 

The exterior derivative maps p-forms to (p+1)-forms according to the rule: 

 

where the new differential line element is introduced before any previously existing wedge products. The 

exterior derivative gives zero when applied twice due to the symmetry under the interchange of the two 

derivatives and the anti-symmetry of the wedge product. 

The interior product of a vector  with a p-form is defined as: 

    

mapping p-forms to (p-1)-forms. This is also a nilpotent operation. 

There is a natural correspondence between the space of p-forms and the space of (n-p)-forms. This motivates 

the introduction of the Hodge Star Operation which transforms p-forms into (n-p)-forms. The Hodge Star is 

defined as: 

, 

where g is the determinant of the metric tensor. Performing this operation twice in succession produces the 

result: 

    

where n is the dimension of the manifold. 

 The adjoint of an operator is defined via the inner product 

    . 

The definition of the adjoint of the exterior derivative is 

    . 



An explicit formula for  may be found by equating the integral of a total derivative over a compact manifold 

without boundary to zero using Stokes’ Theorem. 

    . 

Inserting the square of the Hodge Star in the second integral gives 

    

resulting in the formula 

    . 

A p-form which can be written globally as the exterior derivative of a (p-1)-form, , is called an 

exact p-form. A p-form which can be written globally as  is called co-exact. Hodge’s Theorem 

states that on a compact manifold without boundary any p-form can be uniquely decomposed into the sum of an 

exact, a co-exact and a harmonic piece 

    

where harmonic means that the p-form is annihilated by both the exterior derivative and its adjoint. 

The adjoint of the interior product with a vector k is the exterior product with with , the one-form dual to k. 

This is defined in a completely analogous way 

    . 

The explicit form of  may be found by using the fact that  is an (n+1)-form and therefore 

identically zero. 

 . 

Inserting the square of the Hodge Star, as previously, leads to the formula for the exterior product 

    . 

The dual one-form  may be obtained from the vector  using the metric tensor  . 

The function  is therefore 

    . 

A positive definite operator, the Laplacian , may be defined in terms of an operator, say , and its adjoint 

. 

    . 

The fact that this operator is positive definite may be demonstrated by consideration of the inner product of the 

p-forms  and  . 

    

      

      

Any eigenvalue of the Laplacian must therefore be greater than or equal to zero because if  is a normalized 

eigenform with eigenvalue E, then  . 

 



3. Fixed Point Theorems 

As with the Morse Inequalities, Witten uses an index theorem method to prove the Lefschetz Fixed Point 

Theorems, but by employing a slightly more complicated supersymmetric system. These theorems equate the 

Euler Characteristic and Hirzebruch Signature of a manifold to those of any submanifold which is invariant 

under the action of a vector. In what follows only the even-dimensional case will be considered, as the Fixed 

Point Theorems are trivial for odd-dimensional manifolds, see Appendix 3(ii). 

On a compact, oriented Riemannian manifold M, which admits the action of a one-parameter group of 

isometries generated by a Killing Vector k, the exterior derivative may be generalized to 

     

where s is an arbitrary parameter, and  is the interior product with the Killing Vector. The square of this 

operator is the Lie Derivative along the Killing Vector. 

     . 

In the even-dimensional case the adjoint of  is the operator , where 

     . 

The operator  is the exterior product with , the one-form dual to the vector k, as defined on the third 

page of Appendix 3(i). The square of the Hodge Star operation is 

     

where  is a p-form. This leads to the result that the square of the adjoint operator  is minus the Lie 

Derivative along the Killing Vector. 

     

      

      

      

      

      . 

This result, that , only occurs due to k being a Killing Vector. Because k generates an isometry the 

Lie Derivative acting on the metric gives zero,  , and so the Hodge Star operation commutes with  . 

 



 

3.1 The Lefschetz Fixed Point Theorem 

Defining the supersymmetry operator in terms of the generalized exterior derivative and its adjoint 

    

gives the Hamiltonian as 

  . 

The operator  maps p-forms to (p+1)-forms and (p-1)-forms, so the supersymmetry operator maps even-forms 

to odd-forms and odd-forms to even-forms. Acting on the exterior algebra decomposed into  and 

, the index of the supersymmetry operator is the number of even-form eigensolutions of Hs minus the 

number of odd-form eigensolutions. The Lefschetz Fixed Point Theorem may be proved by arguing that this 

index is independent of s, and then studying the large s spectrum of the Hamiltonian equating the value of the 

index when s = 0 and s tends to infinity. The reason that the index does not vary with s derives from the fact 

that all non-zero energy solutions of the Schrödinger Equation form quadruplets, 

, two even-forms and two odd-forms, whose contribution to the index is 

therefore zero. 

The degeneracy of these solutions may easily be demonstrated. Taking  to be a solution of the Schrödinger 

Equation with energy E, 

     

and acting with the operator , gives 

     

    implies    . 

The fact that  commutes with  gives 

     

     

so  is also a solution of the Schrödinger Equation with energy E. Similarly  and  commute with the 

Hamiltonian to give new solutions  and , with energy E. These are all the solutions which are 

degenerate due to supersymmetry because  .  commutes with the Hamiltonian, so  

may be taken to be a simultaneous eigensolution of both of these operators.  , so 

this also does not give a new solution. 

The Hodge Star * also commutes with the Hamiltonian thus doubling the degeneracy of the excited states to 

eightfold. 

The zero energy solutions are supersymmetry singlets, annihilated by  and  . The index of the 

supersymmetry operator acting on  and  is therefore the number of zero energy even-form 

solutions minus the number of zero energy odd-form solutions. As the parameter s is varied continuously the 

index cannot change. For some value of s a solution with zero energy may obtain a positive energy or the 

energy of one that was positive may fall to zero, but any solutions whose energy, as a function of s, behaves in 

this way must be a member of a degenerate quadruplet, so the index will not change. 



When s = 0 the supersymmetry operator is , and the index is the index of the De Rham complex 

which is equal to the Euler Characteristic of the manifold . The value of the index for large s may be 

found by a closer examination of the Hamiltonian and turns out to equal the Euler Characteristic , of the 

fixed submanifold N. The fixed submanifold consists of the set of points which are mapped into themselves by 

the action of the isometry, i.e. the points at which all the components of the Killing Vector vanish. 

Writing out the expression for the Hamiltonian more explicitly 

     

     

     . 

The interior product of k with its dual is the function K², defined in Appendix 3(i), which only vanishes on the 

fixed submanifold. Calculation of the anti-commutators in the Hamiltonian may now be performed. 

     

After using the Leibnitz Rule for an anti-derivation, this gives 

     

      . 

Similarly 

     

      

and 

     

      

      

where  acts as an interior product. 

The full expression for the Hamiltonian is therefore, 

     

 acts on a p-form to give a (p+2)-form and  acts on a p-form to give a (p-2)-form. 

 



 

3.1.1 Isolated Fixed Points 

For s large the Hamiltonian is dominated by the potential term s²K² which is large except near the zeroes of K², 

that is, the fixed point set of the Killing Vector. The low energy eigensolutions thus become concentrated 

around the fixed submanifold N. The case when N consists of isolated fixed points is similar to the case of non-

degenerate Morse Theory discussed in sections 1 and 2, the Hamiltonian approximates to a harmonic oscillator 

around each zero of K². Using a locally Euclidean coordinate system and using the fermion creation and 

annihilation operator notation gives simple formulae for the relevant operators. The Killing Vector takes the 

form of a rotation around the fixed point. After rotating and translating the fixed point to the origin to simplify 

the formulae, and reflecting if necessary 

 

     

 

     

 

where the xi have been labelled such that k is in the standard form where , for all i. The adjoint operator 

 takes the form 

     

 

which leads to the formula for the exterior operator  

     

     

     

     . 

The adjoint of this operator may be obtained by acting on the interior product operator  with the adjoint of the 

exterior derivative . 

     



       

The function K² is 

     

       

       

the anti-commutators , because 2i is even and 2j – 1 is odd. 

Putting these various formulae together gives the approximate Hamiltonian, localized near an isolated fixed 

point at the origin as 

   . 

This Hamiltonian has one zero energy eigensolution, which can be found as follows. Note that 

   

      

   

      

      

Therefore this leads to a normalizable even-form state  which is annihilated by , the first order 

approximation to  . 

     

where  is the fermion Fock Space vacuum, the state annihilated by all the annihilation operators, and where 

the exponential in  is a finite series due to the finite dimension of the manifold, 

 

where  means that  is omitted. Acting with the Hodge Star and using the locally flat metric 



 

 

    

where  equals 0 or 1, depending on whether the orientation on the coordinate patch containing the fixed point 

agrees or disagrees with the natural orientation of the manifold. Therefore  is self-dual or anti-self-dual, 

depending on the orientation of the patch and whether the dimension of the manifold is an even or an odd 

multiple of two. This implies that  is also annihilated by  to this approximation: 

     

 is the only normalizable state which is annihilated by  and also by , due to its self or anti-self-duality; 

it is therefore the only zero energy eigensolution of the approximate Hamiltonian  . All other eigensolutions 

have energies proportional to s. 

Taking into account all the fixed points leads to the Lefschetz Fixed Point Theorem. The total number of even-

form approximate zero energy solutions , is equal to the number of fixed points. There are no odd-form zero 

energy solultions. Equating the value of the index of , acting on the decomposed exterior algebra , 

, when s = 0 and when s tends to infinity gives 

     number of fixed points 

where ,  are the sum of the even, odd Betti Numbers of M. 

 

 

3.1.2 Non-isolated Fixed Points 

These considerations generalize straightforwardly to the case where the fixed point set does not just consist of 

isolated fixed point. For large s the low energy solutions are localized around the fixed submanifold N. Near a 

connected component of the fixed submanifold N0, coordinates may be chosen locally to give a product space 

of the (n-2q)-dimensional submanifold N0, and 2q-dimensional Euclidean coordinates. In these coordinates the 

Hamiltonian takes the approximate form of the Laplacian on N0 plus a 2q-dimensional harmonic oscillator of 

the same form as in the isolated fixed points case. The exterior derivative may be split into the exterior 

derivative on N0, which anti-commutes with , and a piece in the 2q flat coordinates which doesn’t. The zero 

energy solutions  in this approximation take the form of products of the representatives of the 

cohomology of N0 with the zero energy solution of the 2q-dimensional harmonic oscillator 

 

    

 



where the  are the representatives of the cohomology of N0. The fact that  follows 

immediately from the fact that  is annihilated by the exterior derivative on N0, and the harmonic oscillator 

ground state part of  is annihilated by the rest of . In this approximation the Hodge Star will act 

separately on each part of the product space, giving 

 

    

 

where  is the Hodge Star on N0.  must also be a representative of the cohomology of N0 by Poincare 

duality; therefore  implies . 

Taking into account all pieces of the fixed submanifold N, the total number of even-form approximate zero 

energy solutions N+ is equal to the sum of the even Betti Numbers of all the components of N, and the total 

number of odd-form approximate zero energy solutions N- is equal to the sum of the odd Betti Numbers of N. 

The fact that the index is independent of s gives,  

 

   

 

the Euler Characteristic of the whole manifold equals the Euler Characteristic of the fixed point set. 

The results will be illustrated by analysis of supersymmetric quantum mechanics on the manifolds  and . 

These models will be analysed in detail, including examination of the excited states. In contrast to the zero 

energy states which are only dependent on the topology, the excited states depend on the geometry of the 

manifold. The zero energy states are singlets under the manifold’s isometry group whereas the excited states 

form non-trivial representations. Distorting the manifold would alter the isometery group and so have a non-

trivial effect on the excited state; similarly distorting the exterior derivative gives a Hamiltonian which is no 

longer invariant under the action of the full isometry group. 

 



 

3.2 Bound on the Betti Numbers of the Fixed Point Set 

Two other inequalities which follow from Witten’s analysis are the bounds on the Betti Numbers of the fixed 

point set: 

      ,  . 

These inequalities may be demonstrated straightforwardly, as follows. 

For any non-zero s the number of zero energy eigensolutions of  is independent of s and denoted  . 

This quantity’s independence of s is demonstrated by defining an operator , which multiplies a p-form by 

, and conjugating  by this operator: 

   

     

       

       

       

       

 

where  . Conjugation by  cannot change the dimension of the states closed but not exact in the 

sense of  , thus s may be changed to an arbitrary non-zero value without altering the number of zero energy 

eigensolutions of  . 

As the continuous parameter s is varied the only value at which the number of zero energy eigensolutions may 

change is s = 0. The energy of an eigensolution expressed as a function of s, E(s), will vary continuously as s 

changes. If E(s) = 0 for all s > 0, it must be zero when s is equal to zero by continuity. However, if E(s) > 0 for 

all s > 0, it is possible that E(s) � 0 as s � 0, so it is possible for a supersymmetry quadruplet of states to have 

an energy which converges to zero as s vanishes. This implies that the number of zero energy eigensolutions 

when s = 0 must be greater than or equal to the number of zero energy eigensolutions for non-zero s, i.e. 

     . 

Using the relation  leads to bounds on the sum of the Betti Numbers of N. 

     

Along with the Lefschetz Fixed Point Theorem 

     

this gives the two inequalities: 

      ,  . 

Moreover the difference between these quantities must be even due to the fact that the solutions whose energy 

converges to zero must form supersymmetry quadruplets: 

      ,  , 

where K is an integer. A case where these inequalities are not saturated is the torus T², see Appendix 3(iii). 

 



 

3.3 The Hirzebruch Signature 

Acting with the Hodge Star on the Schrödinger Equation 

 

     

     

     

     

 

leads to the conclusion that if  is a solution with energy E, then its dual  is also solution with energy 

E. By taking linear combinations the solutions of the Schrödinger Equation may be taken to be self and anti-

self-dual forms. All non-zero energy solutions must come in degenerate self and anti-self-dual pairs, so the 

number of self-dual solutions minus the number of anti-self-dual solutions must be independent of s for the 

same reason as in the previous cases. In fact, the only solutions which are not necessarily paired are the zero 

energy p-forms of middle degree. 

When s = 0 the Hamiltonian is the ordinary Laplacian, so the number of self-dual solutions of the Schrödinger 

Equation minus the number of anti-self-dual solutions equals the trace of the quadratic form [9] 

     

where  are normalized representatives of the middle cohomology group of M. Decomposing the 

representatives of the middle cohomology group into self and anti-self-dual forms, , diagonalises the 

quadratic form, 

     if   , 

         = 0 if  . 

 

where  denotes the inner product of  and  . The trace of the quadratic form is a 

topological invariant, the signature  . If the forms of middle degree are odd-forms the quadratic form is 

anti-symmetric, so its trace is zero, therefore the signature is only non-zero for manifolds of dimension n = 4k. 

The signature may therefore be expressed in terms of the numbers of self and anti-self-dual harmonic 2k-forms: 

 

     

 

where the middle Betti Number has been decomposed, 

 

     . 

The number of self-dual minus anti-self-dual eigensolutions of the Hamiltonian must still be the same in the 

large s limit. In the case when all the fixed points are isolated, each one will be in a separate coordinate patch. 



Taking a particular fixed point and labelling the coordinates  in the patch, such that the Killing Vector is in 

the standard form where all the  are positive, the zero energy state localized near the fixed point will be self or 

anti-self-dual depending on whether  is an even or odd multiple of the volume form at the 

fixed point. Assigning a sign , equal to plus or minus one respectively, to each fixed point gives the result, 

 

     

 

When the fixed point set N doesn’t consists of isolated points, an orientation form  may be assigned to an  

(n-2q)-dimensional component , by requiring that the n-form , with q factors of , is a 

positive multiple of the volume form of M. In the large s limit, with the Hodge Star operation acting separately 

on the coordinates of  and the approximate flat transverse coordinates, states self or anti-self-dual under the 

Hodge Star on M correspond to eigensolutions of the Laplacian on , self or anti-self-dual under the Hodge 

Star on  . Adding contributions to the index from each component of N gives: 

   

     . 

 

This will be illustrated in the case of supersymmetric quantum mechanics on . 



 

3.4 Relation to Quantum Field Theory 

The supersymmetry operators may be slightly redefined as 

     ,  

which gives the supersymmetry algebra 

     

     

     

             (1) 

 

where  is a central charge, in other words it commutes with all the other operators in the algebra. 

All the previous considerations about the zero energy states obviously still applies in this context as the 

Hamiltonian is unaltered. 

Witten proves the Lefschetz Fixed Point Theorem in the finite dimensional, quantum mechanics case, but with 

a mind to ultimate application to quantum field theory which is infinite dimensional. These results are still on 

firm ground, because their proofs are only dependent on perturbation theory, which is the usual approach to the 

analysis of quantum field theories. In fact they only rely on the zeroth order perturbative result, equivalent to 

the Born Approximation, and so no complications due to regularization and renormalization arise. 

In the case of the two-dimensional non-linear sigma model the supersymmetry operators obey the above 

algebra when the Killing Vector is taken to be the generator of translations in the spatial dimension, so that the 

central charge P is the momentum operator, and the algebra is the two-dimensional supersymmetry algebra. 

This -model may be treated as quantum mechanics on the infinite dimensional loop space  of maps 

from the spatial dimension S into the target manifold B. The fixed point set of the translation is the target 

manifold B, so that if the Lefschetz Fixed Point Theorem is still valid, the index of the supersymmetry operator 

must equal the Euler Characteristic of the target manifold. 

      

This implies that the non-linear sigma model on any manifold with non-zero Euler Characteristic has unbroken 

supersymmetry. 

Witten’s proof that, for  the number of zero eigensolutions of the Hamiltonian equals the sum of the Betti 

Numbers of the fixed point set, is not so obviously applicable in the quantum field theory case, as it relies on a 

non-perturbative construction. If this result does still hold it means that supersymmetry is never broken when 

the target manifold of the sigma model is compact and orientable, because at least two Betti Numbers must be 

non-zero. 

 



 

Appendix 3(ii) 

   Odd-dimensional manifolds 

In sections 3, 4 and 5 only the even-dimensional manifolds will be considered as the Lefschetz Fixed Point 

Theorem is trivial in the odd-dimensional case. Each harmonic p-form  is related by Poincare duality to a 

harmonic (n-p)-form : 

     

             

so the Betti Numbers of a manifold obey the relationship 

    ,    . 

On an odd-dimensional manifold Poincare duality relates harmonic even-forms to harmonic odd-forms, so the 

Euler Characteristic is always zero. The dimension of the fixed point set N always equals the dimension of M 

minus an even number, so the fixed point set of an odd-dimensional manifold is odd-dimensional. Therefore, in 

the odd-dimensional case, the Lefschetz Fixed Point Theorem relates two quantities which must be zero 

anyway. 

 

 



Appendix 3(iii) 

   A simple example: T² 

T² has two commuting continuous isometries generated by the Killing Vectors  and  . Introducing the 

Killing Vector  into the supersymmetry algebra 

     

 

     

 

    

where  is the 4x4 unit matrix. 

The eigensolutions of the Schrödinger Equation are still the same as in the cse without the introduction of the 

Killing Vector, but the energy levels are raised. The spectrum is now 

    

where n and m are integers. The ground state energy is  

    

so there are no zero energy solutions. This is due to the fact that the Killing Vector is a translation in  and has 

no fixed points on the torus. 

This is an example where the inequalities, 

     ,   , 

the bounds on the Betti Numbers of the fixed point set, are not saturated. In fact 

     ,  

     ,  

the four eigensolutions which are harmonic in the sense of the ordinary exterior derivative form a 

supersymmetry quadruplet when  . 

Because there are  no zero energy solutions supersymmetry is broken. In quantum field theories, in this case, 

the non-renormalization theorem would no longer hold, so fermion and boson masses would no longer be 

cancel. However, in quantum mechanics, as there is no such renormalization, energy levels will still be boson-

fermion degenerate even if there are no zero energy solutions. 

 

 


